titanium iv oxide rutile factory
SR-2377 is another popular rutile titanium dioxide known for its excellent dispersion properties and high tinting strength. It is commonly used in the manufacturing of inks, paper, and rubber products due to its ability to provide intense and consistent color. Moreover, SR-2377 offers good chemical resistance and stability, making it a reliable option for long-lasting formulations.
Titanium dioxide prices climbed significantly in the European region during Q2 2021, owing to strong demand from the downstream sector. Major global suppliers indicated that they have seen a surge in its demand for primarily from Europe and Asia, despite a global supply constraint. Furthermore, a global player raised titanium dioxide costs in Europe by 200 USD /MT this quarter, effective Q3 2021.
When choosing lithopone, you must choose a good brand and pay attention to its production date. Some people just don’t pay attention to this aspect and often pursue cheap prices. As a result, they buy products that are close to their expiration date and have not been stored for long. It is no longer usable. This is very important.
In addition to quality, pricing is also a key factor when choosing a supplier for lithopone. This supplier understands the importance of offering competitive prices to their customers while still maintaining the high standards of their products. By providing lithopone at a reasonable price, they make it possible for businesses of all sizes to access this essential pigment for their manufacturing needs

lithopone 28%-30% pricelist supplier.
The Process of Gravimetric Determination of TiO2
Additional Health Concerns Linked to Titanium Dioxide
5. Cristal Cristal is a leading manufacturer of TiO2, with production facilities located in the Middle East and Africa. The company offers a wide range of TiO2 products, including rutile, anatase, and speciality grades, catering to the needs of different industries. Cristal is committed to sustainability and has implemented several environmental initiatives to reduce its carbon footprint.
2: Clarification mechanism of coagulant
Chemical coagulation is a process in which chemical agents (coagulants) are added to water treatment to make colloidal dispersion system destabilize and agglomerate. In the coagulation process, small suspended particles and colloidal impurities are aggregated into larger solid particles to separate particulate impurities from water, which is called coagulation clarification.
After adding coagulant into water, colloidal particles and other small particles can be polymerized into larger flocs through the comprehensive action of mixing, coagulation and flocculation. The whole process of coagulation and flocculation is called coagulation.
(1) Destabilization and condensation of colloids
Adding electrolyte to water can compress the electric double layer and destabilize the colloid. The main mechanism is that the electric double layer of colloidal particles in water is compressed or neutralized by adding aluminum salt or iron salt coagulant. The coagulant and raw water are mixed rapidly and evenly, and a series of chemical reactions are produced to destabilize. This process takes a short time, generally about 1 min. Some cationic polymers can also play a role in the destabilization and condensation of colloids in water. These polymers have a long chain structure and positive charge in water. Their destabilization and condensation of colloids in water is due to the interaction of van der Waals force adsorption and electrostatic attraction.
(2) Flocculation and formation of floc (alum)
The particle size of the initial flocculate formed by colloid destabilization and coagulation in water is generally more than 1 m. at this time, Brownian motion can no longer push them to collide and form larger particles. In order to make the initial flocs collide with each other to form large flocs, it is necessary to input additional energy into the water to produce a velocity gradient. Sometimes it is necessary to add organic polymer flocculant into water, and the adsorption bridging effect of long chain molecules of flocculant is used to improve the probability of collision and adhesion. Flocculation efficiency usually increases with the increase of flocculate concentration and flocculation time.
Compared with polyaluminum chloride, polyaluminum chloride has the advantages of high density, fast settling speed and wide pH adaptability; the coagulation effect is less affected by temperature than that of polyaluminum sulfate; however, when adding ferric salt, it should be noted that when the equipment is not in normal operation, the iron ions will make the effluent color, and may pollute the subsequent desalination equipment.
Chemical coagulation is a process in which chemical agents (coagulants) are added to water treatment to make colloidal dispersion system destabilize and agglomerate. In the coagulation process, small suspended particles and colloidal impurities are aggregated into larger solid particles to separate particulate impurities from water, which is called coagulation clarification.
After adding coagulant into water, colloidal particles and other small particles can be polymerized into larger flocs through the comprehensive action of mixing, coagulation and flocculation. The whole process of coagulation and flocculation is called coagulation.
(1) Destabilization and condensation of colloids
Adding electrolyte to water can compress the electric double layer and destabilize the colloid. The main mechanism is that the electric double layer of colloidal particles in water is compressed or neutralized by adding aluminum salt or iron salt coagulant. The coagulant and raw water are mixed rapidly and evenly, and a series of chemical reactions are produced to destabilize. This process takes a short time, generally about 1 min. Some cationic polymers can also play a role in the destabilization and condensation of colloids in water. These polymers have a long chain structure and positive charge in water. Their destabilization and condensation of colloids in water is due to the interaction of van der Waals force adsorption and electrostatic attraction.
(2) Flocculation and formation of floc (alum)
The particle size of the initial flocculate formed by colloid destabilization and coagulation in water is generally more than 1 m. at this time, Brownian motion can no longer push them to collide and form larger particles. In order to make the initial flocs collide with each other to form large flocs, it is necessary to input additional energy into the water to produce a velocity gradient. Sometimes it is necessary to add organic polymer flocculant into water, and the adsorption bridging effect of long chain molecules of flocculant is used to improve the probability of collision and adhesion. Flocculation efficiency usually increases with the increase of flocculate concentration and flocculation time.
Compared with polyaluminum chloride, polyaluminum chloride has the advantages of high density, fast settling speed and wide pH adaptability; the coagulation effect is less affected by temperature than that of polyaluminum sulfate; however, when adding ferric salt, it should be noted that when the equipment is not in normal operation, the iron ions will make the effluent color, and may pollute the subsequent desalination equipment.